A hybrid method for solving stochastic job shop scheduling problems
نویسندگان
چکیده
This paper presents a nonlinear mathematical programming model for a stochastic job shop scheduling problem. Due to the complexity of the proposed model, traditional algorithms have low capability in producing a feasible solution. Therefore, a hybrid method is proposed to obtain a near-optimal solution within a reasonable amount of time. This method uses a neural network approach to generate initial feasible solutions and then a simulated annealing algorithm to improve the quality and performance of the initial solutions in order to produce the optimal/near-optimal solution. A number of test problems are randomly generated to verify and validate the proposed hybrid method. The computational results obtained by this method are compared with lower bound solutions reported by the Lingo 6 optimization software. The compared results of these two methods show that the proposed hybrid method is more effective when the problem size increases. 2005 Elsevier Inc. All rights reserved. 0096-3003/$ see front matter 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2004.11.036 * Corresponding author. E-mail addresses: [email protected] (R. Tavakkoli-Moghaddam), [email protected].
منابع مشابه
Three Hybrid Metaheuristic Algorithms for Stochastic Flexible Flow Shop Scheduling Problem with Preventive Maintenance and Budget Constraint
Stochastic flexible flow shop scheduling problem (SFFSSP) is one the main focus of researchers due to the complexity arises from inherent uncertainties and also the difficulty of solving such NP-hard problems. Conventionally, in such problems each machine’s job process time may encounter uncertainty due to their relevant random behaviour. In order to examine such problems more realistically, fi...
متن کاملSolving Flexible Job Shop Scheduling with Multi Objective Approach
In this paper flexible job-shop scheduling problem (FJSP) is studied in the case of optimizing different contradictory objectives consisting of: (1) minimizing makespan, (2) minimizing total workload, and (3) minimizing workload of the most loaded machine. As the problem belongs to the class of NP-Hard problems, a new hybrid genetic algorithm is proposed to obtain a large set of Pareto-optima...
متن کاملSolving the flexible job shop problem by hybrid metaheuristics-based multiagent model
The flexible job shop scheduling problem (FJSP) is a generalization of the classical job shop scheduling problem that allows to process operations on one machine out of a set of alternative machines. The FJSP is an NP-hard problem consisting of two sub-problems, which are the assignment and the scheduling problems. In this paper, we propose how to solve the FJSP by hybrid metaheuristics-based c...
متن کاملGeneralized Cyclic Open Shop Scheduling and a Hybrid Algorithm
In this paper, we first introduce a generalized version of open shop scheduling (OSS), called generalized cyclic open shop scheduling (GCOSS) and then develop a hybrid method of metaheuristic to solve this problem. Open shop scheduling is concerned with processing n jobs on m machines, where each job has exactly m operations and operation i of each job has to be processed on machine i . However...
متن کاملImproved teaching–learning-based and JAYA optimization algorithms for solving flexible flow shop scheduling problems
Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having ‘g’ operations is performed on ‘g’ operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 170 شماره
صفحات -
تاریخ انتشار 2005